Estimation of Thread Stresses in 3/8" and 1/2" Ferrule Type Compression Tube Fittings for Knechtion Repair

George W. Weilbacher P.E.

Winston Machinery Services Katy, TX

July 15, 2013

PROBLEM STATEMENT

- Knechtion Repair asked Winston Machinery Services (WMS) to provide a stress estimation as to the expected shear stresses resulting in the threads of a 3/8" and 1/2" ferrule compression type tube fitting and nut.
- WMS performed this calculation using classical methods available from literature within the public domain.
- The analysis conducted assumes that tightening the connection per the various manufacturers' recommendations does not yield the threads making up the connection.
- The analysis conducted assumes the components making up the connection to be concentric with no eccentricity.
- The analysis conducted pertains only to 304 and 316 stainless steels.

METHODOLGY

- Using ASME B31.3 allowable stresses for stainless steel tubing, a maximum pressure load was determined for various wall thicknesses for the tubing diameters of interest.
- Pressure loads were then considered to be acting on the silhouette of the internal cross-section from which a nominal axial load acting parallel to a straight tube's axis was determined.
- To determine a worst-case loading condition, nominal tubing dimensions as well as minimum and maximum tubing tolerances were considered.
- Using equations presented in Bickford and Nassar's "Handbook of Bolts and Bolted Joints" the thread shear area was determined for a given number of threads engaged and resulting shear stresses determined.

To calculate a design wall thickness, ASME B31.3 provides the following equations

$$t = \frac{PD}{2(SEW + PY)}$$
 (ASME B31.3 Eq. 3a)
$$t = \frac{P(d + 2c)}{2[SEW - P(1 - Y)]}$$
 (ASME B31.3 Eq. 3b)

Where

- P = applied internal pressure (psi)
- D = nominal outside diameter (in)
- S = stress value for material as taken from B31.3 Table A 1
- E = quality factor from Table A 1B
- W = weld joint strength reduction factor
- *Y* = *Coefficient from B*31.3 *Table* 304.1.1
- $d = inside \ diameter \ of \ tube \ (in)$
- c = sum of mechanical allowances

Rearranging B31.3 Equation 3a to solve for pressure yields

$$P = \frac{SEW}{\frac{D}{2t} - Y}$$

and for B31.3 Equation 3b

$$P = \frac{SEW}{(1-Y) + \frac{d+2c}{2t}}$$

Where in all calculations the following values were assumed

$$S = 20,000 \ psi$$

 $E = 1.0 \ for \ seamlesss \ tubing$
 $W = 1$
 $c = 0$

Figure 2: Rearrangement of B31.3 Wall Thickness Calculations

																_
c =	0	sum of me	chanical all	owances							From AS	ME 31.3, 1	Table 304.	1, if		
OD =	0.375	outside dia	ameter (in)													
E _s =	1.00	ASME B31	.3 Quality Fa	actor ASTN	1 A-269 sea	amless (See	Table A-18	3)			$Y < \frac{D}{T}$					
E _{fw1} =	0.80	ASME B31	.3 Quality Fa	actor ASTN	1 A-269 fus	ion welded										
$E_{fw2} =$	0.85	ASME B31	.3 Quality Fa	actor ASTN	1 A-269 fus	ion welded	then									
S =	20,000	ASME B31	.3 allowable	e stress (psi)											
W =	1.00												Y = 0.4			
Tubing Wall Thickness (in)											else					
Parameter	0.035	0.049	0.065	0.083	0.095								4 - 2	_		
d =	0.305	0.277	0.245	0.209	0.185	inside diar	nside diameter (in)					$Y = \frac{u + 2c}{D + d + 2c}$				
A _i =	0.073	0.060	0.047	0.034	0.027	internal cr	oss-sectio	nal area (in [,]	^2)		D + a + 2c where 'c' is the sum of mechanical allowances					
Y =	0.400	0.400	0.395	0.358	0.330	coefficien	t (See ASM	E 31.3 Sect	ion 304.1							
													.,			_
Allowable	Pressure pe	r ASME B3	1.3 Equatio	n 3.a using	nominal	diameter a	nd wall th	ickness								
P _s =	4,035	5,837	8,034	10,520	12,170	←	Sean	nless								
P _{fw1} =	3,228	4,669	6,427	8,416	9,736	\leftarrow	Sina	le fusion v	voldod ti	ihina wal						
$P_{fw2} =$	3,429	4,961	6,829	8,942	10,345	\leftarrow	Doul	hla fusion	woldodi	tubina wa	, ,					
							Doui	Je jusion	wended i	ubiliy wi	411					
Allowable	Pressure pe	r ASME B3	1.3 Equatio	n 3.b using	nominal	diameter a	nd wall th	ickness								
P _s =	4,035	5,837	8,034	10,520	12,170											
P _{fw1} =	3,228	4,669	6,427	8,416	9,736											
P _{fw2} =	3,429	4,961	6,829	8,942	10,345											

Figure 3: Allowable Pressure Calculations for Nominal 3/8" Tubing

c =	0	sum of me	chanical all	lowances						From A	SME 31.3,	Table 304.1	1, if			
OD =	0.5	outside dia	imeter (in)													
E _s =	1.00	ASME B31.	3 Quality F	actor ASTM	1 A-269 sea	mless (See	Table A-1E	3)			$Y < \frac{D}{6}$					
E _{fw1} =	0.80	ASME B31.	3 Quality F	actor ASTM	1 A-269 fus	ion welded	l single butt	seam (Se	e Table A-1B)							
E _{fw2} =	0.85	ASME B31.	3 Quality F	actor ASTM	1 A-269 fus	ion welded	l double bu	then								
S =	20,000	ASME B31.	3 allowable	e stress (psi)					then						
W =	1.00											Y = 0.4				
		Tubing	Wall Thickr	ness (in)						else						
Parameter	0.035	0.049	0.065	0.083	0.095							4 . 0	-			
d =	0.430	0.402	0.370	0.334	0.310	inside diar	meter (in)				$Y = \frac{d+2c}{D+d+2c}$					
A _i =	0.145	0.127	0.108	0.088	0.075	internal cr	ross-section	nal area (ir	n^2)							
Y =	0.400	0.400	0.400	0.400	0.383	coefficien	t (See ASM	E 31.3 Sec	tion 304.1	where '	where 'c' is the sum of mechanical allowances					
Allowable	Pressure pe	er ASME B31	1.3 Equatio	on 3.a using	nominal	diameter a	nd wall thi	ickness								
P _s =	2,966	4,253	5,804	7,657	8,893											
P _{fw1} =	2,373	3,403	4,643	6,125	7,115											
P _{fw2} =	2,521	3,615	4,933	6,508	7,559											
Allowable	Pressure pe	er ASME B31	1.3 Equatio	on 3.b using	nominal	diameter a	nd wall thi	ickness								
P _s =	2,966	4,253	5,804	7,657	8,893											
P _{fw1} =	2,373	3,403	4,643	6,125	7,115											
P _{fw2} =	2,521	3,615	4,933	6,508	7,559											

Figure 4: Allowable Pressure Calculations for Nominal 1/2" Tubing

Wall thickness

0.035" 0.049" 0.065″ 0.083"

0.095"

Allowable P	Allowable Pressure Force per ASME B31.3 Equation 3.a using nominal diameter and wall thickness													
F _s =	248	359	495	648	749									
$F_{fw1} =$	199	288	396	518	600									
F _{fw2} =	211	305	420	551	637									
Allowable P	Allowable Pressure Force per ASME B31.3 Equation 3.b using nominal diameter and wall thickness													
$F_s =$	248	359	495	648	749									
F _{fw1} =	199	288	396	518	600									
$F_{fw2} =$	211	305	420	551	637									

Allowable Pre	essure Forc	e per ASN	1E B31.3 Ed	quation 3.a	1	
F _s =	206	296	405	534	620	
$F_{fw1} =$	165	237	324	427	496	
$F_{fw2} =$	175	252	344	454	527	
Allowable Pre	essure Forc	e per ASN	1E B31.3 Ed	quation 3.k)	
F _s =	206	296	405	534	620	
$F_{fw1} =$	165	237	324	427	496	
$F_{fw2} =$	175	252	344	454	527	

Nominal tube OD v specified wall thickness

Nominal tube OD +0.005" with wall thickness -15%

Nominal tube OD -0.005" with wall thickness +15%

Allowable Pressure Force per ASME B31.3 Equation 3.a												
F _s =	293	427	586	764	878							
F _{fw1} =	235	342	469	611	702							
$F_{fw2} =$	249	363	498	649	746							
Allowable P	Pressure Fo	rce per ASN	ЛЕ ВЗ1.3 Ес	quation 3.b)							
F _s =	293	427	586	764	878							
$F_{fw1} =$	235	342	469	611	702							
$F_{fw2} =$	249	363	498	649	746							

Figure 5: Axial Force Results 3/8" Tubing As Determined from Allowable Pressure Loads

Figure 6: 3/8" Tube Allowable Pressure Loading Per B31.3 per Wall Thickness at a Resulting Operating Stress of 20,000 PSI

Figure 7: 3/8" Tube Axial Force per Wall Thickness for Allowable Pressure Loading Resulting in an Operating Stress of 20,000 PSI

Figure 8: 1/2" Tube Allowable Pressure Loading Per B31.3 per Wall Thickness at a Resulting Operating Stress of 20,000 PSI

Figure 9: 1/2" Tube Axial Force per Wall Thickness for Allowable Pressure Loading Resulting in an Operating Stress of 20,000 PSI

	9/16-2	20UN					
D =	0.375	nominal th	read diame	ter (in)			
D _{1max} =	0.5162	maximum r	minor diam	eter of inte	ernal thread	(in)	
D _{2max} =	0.5341	maximum p	pitch diame	ter of inter	nal thread	(in)	
d _{1min} =	0.5544	minimum n	najor diame	eter of exte	ernal thread	(in)	
d _{2min} =	0.5268	minimum p	pitch diame	ter of exte	rnal thread	(in)	
TPI =	20	threads per	r inch				
p =	0.05	thread pito	ch (in)				
External Th	read Shear	Area					
		Nur	mber of Thr	eads Engag	ged		$\pi \cdot LE \cdot D_{1max} [p] = 0$
Parameter	2	3	4	5	6	7	$AS_{ext} = \frac{1}{p} \left[\frac{1}{2} + 0.57735 (d_{2min} - D_{1max}) \right]$
LE =	0.100	0.150	0.200	0.250	0.300	0.350	Length of thread engagement (in)
A _{shr.ext} =	0.101	0.151	0.202	0.252	0.303	0.353	External thread shear area (in) Source: Bickford and Nassar
$\tau_{s_{0.035}} =$	2,461	1,641	1,231	985	820	703	3 Resulting shear stress on fitting for 0.035 inch tube wall thickness (psi)
$\tau_{s_{0.049}} =$	3,561	2,374	1,780	1,424	1,187	1,017	7 Resulting shear stress on fitting for 0.049 inch tube wall thickness (psi)
$\tau_{s_{0.065}} =$	4,901	3,267	2,451	1,960	1,634	1,400	Resulting shear stress on fitting for 0.065 inch tube wall thickness (psi)
τ _{s 0.083} =	6,418	4,278	3,209	2,567	2,139	1,834	Resulting shear stress on fitting for 0.083 inch tube wall thickness (psi)
$\tau_{s 0.095} =$	7,425	4,950	3,712	2,970	2,475	2,121	1 Resulting shear stress on fitting for 0.095 inch tube wall thickness (psi)
			Worst ca	ise threa	id shear	stress re	esults on the external thread
Internal Th	read Shear	Area					
		Nur	mber of Thr	eads Enga	ged		$\pi \cdot LE \cdot d_{1\min}[p]$
Parameter	2	3	4	5	6	7	$AS_{int} = \frac{p}{p} \left[\frac{1}{2} + 0.57735(d_{1min} - D_{2max})\right]$
LE =	0.100	0.150	0.200	0.250	0.300	0.350	Length of thread engagement (in)
A _{shr.ext} =	0.128	0.192	0.256	0.320	0.384	0.448	External thread shear area (in) Source: Bickford and Nassar
τ _{s_0.035} =	1,942	1,295	971	777	647	555	Resulting shear stress on fitting for 0.035 inch tube wall thickness (psi)
$\tau_{s_{0.049}} =$	2,810	1,873	1,405	1,124	937	803	Resulting shear stress on fitting for 0.049 inch tube wall thickness (psi)
$\tau_{s_{0.065}} =$	3,867	2,578	1,934	1,547	1,289	1,105	5 Resulting shear stress on fitting for 0.065 inch tube wall thickness (psi)
τ _{s 0.083} =	5,064	3,376	2,532	2,026	1,688	1,447	7 Resulting shear stress on fitting for 0.083 inch tube wall thickness (psi)
τ _{s 0.095} =	5,859	3,906	2,929	2,343	1,953	1,674	Resulting shear stress on fitting for 0.095 inch tube wall thickness (psi)

Figure 10: Thread Shear Stress Calculation for 3/8" Tube Operating at Allowable Wall Stress of 20,000 PSI

	3/4-20	UNEF														
D =	0.5	nominal th	read diame	ter (in)												
D _{1max} =	0.7037	maximum i	minor diam	eter of inte	ernal thread	l (in)										
D _{2max} =	0.7218	maximum	pitch diame	ter of inter	rnal thread	(in)										
d _{1min} =	0.7419	minimum n	najor diame	eter of exte	ernal thread	l (in)										
d _{2min} =	0.7142	minimum j	pitch diame	ter of exte	rnal thread	(in)										
TPI =	20	threads pe	r inch													
p =	0.05	thread pito	ch (in)													
Extornal Th	road Shoa	Aroa														
External II	ileuu sileui	Area	mber of Th	eads Enga	her							. I.E. D	Fm			,
Parameter	2	3	4	5	6	7					$AS_{ext} = \frac{n}{2}$	D_{1max}	$\frac{x}{2} \left \frac{p}{2} + 0.57 \right $	$735(d_{2min})$	$(n - D_{1max})$	
LE =	0.100	0.150	0.200	0.250	0.300	0.350	Length of t	thread enga	agement (in	1)		p	LZ			J
A _{shravt} =	0.137	0.206	0.275	0.343	0.412	0.481	External th	External thread shear area (in) Source: Bickford and Nassar								
Sintext																
$\tau_{s_{0.035}} =$	1,330	887	665	532	443	380	Resulting s	Resulting shear stress on fitting for 0.035 inch tube wall thickness (psi)								
$\tau_{s_{0.049}} =$	1,907	1,271	953	763	636	545	Resulting s	hear stress	on fitting f	or 0.049	inch tube w	all thickness	s (psi)			
$\tau_{s_{0.065}} =$	2,602	1,735	1,301	1,041	867	743	Resulting s	hear stress	on fitting f	or 0.065	inch tube w	all thickness	s (psi)			
$\tau_{s_{0.083}} =$	3,433	2,289	1,716	1,373	1,144	981	Resulting s	hear stress	on fitting f	or 0.083	inch tube w	all thickness	s (psi)			
$\tau_{s_{0.095}} =$	3,987	2,658	1,994	1,595	1,329	1,139	Resulting s	hear stress	on fitting f	or 0.095	inch tube w	all thickness	s (psi)			
			Worst co	ise three	id shear	stress re	sults on	the exte	rnal thre	ead _						
Internal Th	read Shear	Area														
-	-	Nur	mber of Thi	eads Enga	ged	_					$AS = \frac{\pi}{2}$	$\cdot LE \cdot d_{1min}$	$\frac{p}{p} + 0.57$	735(d.)	$-D_{\alpha}$	
Parameter	2	3	4	5	6	7			. /	、 、	no _{int} –	p	12 1 0.07	, 55 (u _{1min}	D_{2max}	I
LE =	0.100	0.150	0.200	0.250	0.300	0.350	Length of t	inread enga	agement (in	1)	D'ala					
A _{shr.ext} =	0.171	0.256	0.341	0.427	0.512	0.597	External tr	iread shear	area (in)		ource: Bick	ford and Na	assar			
τ	1 070	714	535	478	357	306	Resultings	hear stress	on fitting f	or 0 035	inch tube wa	all thickness	s (psi)			
Te 0.035	1,535	1.023	767	614	512	439	Resultings	hear stress	on fitting f	for 0.049	inch tube w	all thickness	s (psi)			
τ	2 09/	1 396	1 047	828	698	598	Resulting	hear stress	on fitting f	for 0.065	inch tube w	all thickness	s (nsi)			
τ _{- 0.065} =	2,004	1 842	1 387	1 105	921	789	Resultings	hear stress	on fitting f	for 0.083	inch tube w	all thickness	s (nsi)			
τ	2,703	2 1/10	1 605	1 78/	1 070	, 35 Q17	Resulting	hear stress	on fitting f	for 0.005	inch tube w	all thickness	s (nsi)			
^v s_0.095 −	5,209	2,140	1,005	1,204	1,070	31/	itesuiting S	הוכמו גוופגג	on nung I	0.033	inch tube W		s (hai)			

Figure 11: Thread Shear Stress Calculation for 1/2" Tube Operating at Allowable Wall Stress of 20,000 PSI

CONCLUSIONS

- Results show that for the conditions considered and the assumptions made, the estimated thread shear stresses for the thread types considered are significantly less than the yield strength of either 304 or 316 stainless steel which is generally taken at room temperature to be 35 ksi and 37 ksi respectively.
- The analysis made considers the forces developed with the tubing wall operating at an allowable operating stress of 20 ksi per ASME B31.3
- Considering that many plant systems, such as instrument air, operate at pressures significantly less than those necessary to create the maximum allowable stress in the tubing wall, a corresponding decrease in thread stress and a higher factor of safety obtained in compression fitting type connection.
- The analysis effort undertaken is only a stress estimation based on the methodology employed. Where pressures approaching those necessary to produce the maximum allowable tubing wall stress of 20 ksi are present, it is prudent that due diligence be applied especially where critical systems and personnel safety concerns are present.

DISCLAIMER

The thread stress estimation conducted is relevant only to the conditions considered and the assumptions made. It does not consider the many combinations of temperature, operating pressure, mechanical loading, support, restraint, environmental, maintenance, and/or assembly influences to which a compression fitting type connection considered is subject to. Thus, Winston Machinery Service makes no warranty declaration, either explicit or implied, related to the work presented and its use, nor does Winston Machinery Service accept responsibility for damages or injury resulting from the use of the work presented.